skip to main content


Search for: All records

Creators/Authors contains: "Duara, Ranjan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Prodromal detection of Alzheimer’s Disease(AD) is a substantial challenge in the research community. Among the tools used in AD diagnosis, cognitive exams are standard in most procedures. However, the barrage of cognitive examinations is both time and resource consuming. With the use of Machine Learning, Feature Elimination (FE) can be combined with classification algorithms to determine which cognitive exams are best suited for diagnosis. Using the results of FE, it can be determined if subsections of different composite scores can be combined to create a new enhanced and exhaustive exam. This paper implements a Recursive Feature Elimination with Cross Validation (RFECV) machine learning algorithm to determine which cognitive exams perform best for AD classification tasks. Out of 119 features, an average of 16 features were selected as optimal. These optimal features average 75% Accuracy, 70% Precision, and 75% Recall and an F1 Weighted score of 71% in classification. 
    more » « less
    Free, publicly-accessible full text available July 15, 2024
  2. Abstract Alzheimer’s disease (AD) is a neurogenerative condition characterized by sharp cognitive decline with no confirmed effective treatment or cure. This makes it critically important to identify the symptoms of Alzheimer’s disease in its early stages before significant cognitive deterioration has taken hold and even before any brain morphology and neuropathology are noticeable. In this study, five different multimodal deep neural networks (MDNN), with different architectures, in search of an optimal model for predicting the cognitive test scores for the Mini-Mental State Examination (MMSE) and the modified Alzheimer’s Disease Assessment Scale (ADAS-CoG13) over a span of 60 months (5 years). The multimodal data utilized to train and test the proposed models were obtained from the Alzheimer’s Disease Neuroimaging Initiative study and includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from the neuropsychological tests (Cog). The models developed herein delve into two main issues: (1) application merits of single-task vs. multitask for predicting future cognitive scores and (2) whether time-varying input data are better suited than specific timepoints for optimizing prediction results. This model yields a high of 90.27% (SD = 1.36) prediction accuracy (correlation) at 6 months after the initial visit to a lower 79.91% (SD = 8.84) prediction accuracy at 60 months. The analysis provided is comprehensive as it determines the predictions at all other timepoints and all MDNN models include converters in the CN and MCI groups (CNc, MCIc) and all the unstable groups in the CN and MCI groups (CNun and MCIun) that reverted to CN from MCI and to MCI from AD, so as not to bias the results. The results show that the best performance is achieved by a multimodal combined single-task long short-term memory (LSTM) regressor with an input sequence length of 2 data points (2 visits, 6 months apart) augmented with a pretrained Neural Network Estimator to fill in for the missing values. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Objective: The interaction of ethnicity, progression of cognitive impairment, and neuroimaging biomarkers of Alzheimer’s Disease remains unclear. We investigated the stability in cognitive status classification (cognitively normal [CN] and mild cognitive impairment [MCI]) of 209 participants (124 Hispanics/Latinos and 85 European Americans). Methods: Biomarkers (structural MRI and amyloid PET scans) were compared between Hispanic/Latino and European American individuals who presented a change in cognitive diagnosis during the second or third follow-up and those who remained stable over time. Results: There were no significant differences in biomarkers between ethnic groups in any of the diagnostic categories. The frequency of CN and MCI participants who were progressors (progressed to a more severe cognitive diagnosis at follow-up) and non-progressors (either stable through follow-ups or unstable [progressed but later reverted to a diagnosis of CN]) did not significantly differ across ethnic groups. Progressors had greater atrophy in the hippocampus (HP) and entorhinal cortex (ERC) at baseline compared to unstable non-progressors (reverters) for both ethnic groups, and more significant ERC atrophy was observed among progressors of the Hispanic/Latino group. For European Americans diagnosed with MCI, there were 60% more progressors than reverters (reverted from MCI to CN), while among Hispanics/Latinos with MCI, there were 7% more reverters than progressors. Binomial logistic regressions predicting progression, including brain biomarkers, MMSE, and ethnicity, demonstrated that only MMSE was a predictor for CN participants at baseline. However, for MCI participants at baseline, HP atrophy, ERC atrophy, and MMSE predicted progression. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  4. Early detection of Alzheimer’s disease (AD) during the Mild Cognitive Impairment (MCI) stage could enable effective intervention to slow down disease progression. Computer-aided diagnosis of AD relies on a sufficient amount of biomarker data. When this requirement is not fulfilled, transfer learning can be used to transfer knowledge from a source domain with more amount of labeled data than available in the desired target domain. In this study, an instance-based transfer learning framework is presented based on the gradient boosting machine (GBM). In GBM, a sequence of base learners is built, and each learner focuses on the errors (residuals) of the previous learner. In our transfer learning version of GBM (TrGB), a weighting mechanism based on the residuals of the base learners is defined for the source instances. Consequently, instances with different distribution than the target data will have a lower impact on the target learner. The proposed weighting scheme aims to transfer as much information as possible from the source domain while avoiding negative transfer. The target data in this study was obtained from the Mount Sinai dataset which is collected and processed in a collaborative 5-year project at the Mount Sinai Medical Center. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset was used as the source domain. The experimental results showed that the proposed TrGB algorithm could improve the classification accuracy by 1.5 and 4.5% for CN vs. MCI and multiclass classification, respectively, as compared to the conventional methods. Also, using the TrGB model and transferred knowledge from the CN vs. AD classification of the source domain, the average score of early MCI vs. late MCI classification improved by 5%. 
    more » « less
  5. With the advances in machine learning for the diagnosis of Alzheimer’s disease (AD), most studies have focused on either identifying the subject’s status through classification algorithms or on predicting their cognitive scores through regression methods, neglecting the potential association between these two tasks. Motivated by the need to enhance the prospects for early diagnosis along with the ability to predict future disease states, this study proposes a deep neural network based on modality fusion, kernelization, and tensorization that perform multiclass classification and longitudinal regression simultaneously within a unified multitask framework. This relationship between multiclass classification and longitudinal regression is found to boost the efficacy of the final model in dealing with both tasks. Different multimodality scenarios are investigated, and complementary aspects of the multimodal features are exploited to simultaneously delineate the subject’s label and predict related cognitive scores at future timepoints using baseline data. The main intent in this multitask framework is to consolidate the highest accuracy possible in terms of precision, sensitivity, F1 score, and area under the curve (AUC) in the multiclass classification task while maintaining the highest similarity in the MMSE score as measured through the correlation coefficient and the RMSE for all time points under the prediction task, with both tasks, run simultaneously under the same set of hyperparameters. The overall accuracy for multiclass classification of the proposed KTMnet method is 66.85 ± 3.77. The prediction results show an average RMSE of 2.32 ± 0.52 and a correlation of 0.71 ± 5.98 for predicting MMSE throughout the time points. These results are compared to state-of-the-art techniques reported in the literature. A discovery from the multitasking of this consolidated machine learning framework is that a set of hyperparameters that optimize the prediction results may not necessarily be the same as those that would optimize the multiclass classification. In other words, there is a breakpoint beyond which enhancing further the results of one process could lead to the downgrading in accuracy for the other. 
    more » « less
  6. Cross-cultural differences in the association between neuropsychiatric symptoms and Alzheimer's disease (AD) biomarkers are not well understood. This study aimed to (1) compare depressive symptoms and frequency of reported apathy across diagnostic groups of participants with normal cognition (CN), mild cognitive impairment (MCI), and dementia, as well as ethnic groups of Hispanic Americans (HA) and European Americans (EA); (2) evaluate the relationship between depression and apathy with A beta deposition and brain atrophy. Statistical analyses included ANCOVAs, chi-squared, nonparametric tests, correlations, and logistic regressions. Higher scores on the Geriatric Depression Scale (GDS-15) were reported in the MCI and dementia cohorts, while older age corresponded with lower GDS-15 scores. The frequency of apathy differed across diagnoses within each ethnicity, but not when comparing ethnic groups. Reduced volume in the rostral anterior cingulate cortex (ACC) significantly correlated with and predicted apathy for the total sample after applying false discovery rate corrections (FDR), controlling for covariates. The EA group separately demonstrated a significant negative relationship between apathy and superior frontal volume, while for HA, there was a relationship between rostral ACC volume and apathy. Apathy corresponded with higher A beta levels for the total sample and for the CN and HA groups. 
    more » « less
  7. Background: Machine learning is a promising tool for biomarker-based diagnosis of Alzheimer’s disease (AD). Performing multimodal feature selection and studying the interaction between biological and clinical AD can help to improve the performance of the diagnosis models. Objective: This study aims to formulate a feature ranking metric based on the mutual information index to assess the relevance and redundancy of regional biomarkers and improve the AD classification accuracy. Methods: From the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 722 participants with three modalities, including florbetapir-PET, flortaucipir-PET, and MRI, were studied. The multivariate mutual information metric was utilized to capture the redundancy and complementarity of the predictors and develop a feature ranking approach. This was followed by evaluating the capability of single-modal and multimodal biomarkers in predicting the cognitive stage. Results: Although amyloid-β deposition is an earlier event in the disease trajectory, tau PET with feature selection yielded a higher early-stage classification F1-score (65.4%) compared to amyloid-β PET (63.3%) and MRI (63.2%). The SVC multimodal scenario with feature selection improved the F1-score to 70.0% and 71.8% for the early and late-stage, respectively. When age and risk factors were included, the scores improved by 2 to 4%. The Amyloid-Tau-Neurodegeneration [AT(N)] framework helped to interpret the classification results for different biomarker categories. Conclusion: The results underscore the utility of a novel feature selection approach to reduce the dimensionality of multimodal datasets and enhance model performance. The AT(N) biomarker framework can help to explore the misclassified cases by revealing the relationship between neuropathological biomarkers and cognition. 
    more » « less